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I. INTRODUCTION

Many laser systems operating in the atmosphere can be degraded by
atmospheric turbulence. For example, target-illumination systems, communication
systems, radar systems, and others may be severely aff ected by turbulence effects
including beam scintillation. For this reason a considerable effort has been made
to understand and correct for these turbulence eff ects(l). These atmaspheric
correction efforts are based on determining the phase distortions introduced by
turbulence and correcting them at the laser aperture. The theory that has been
developed along these lines to date has been in the regime of weak turbulence only,
where the beam wanders as a whole and does not break up into multiple patches or
blobs. Under this condition a correction for wavefront tilt leads to a considerable
improvement of on-axis irradiance.

In this paper, we are concerned with the eff ectiveness of this tilt correction
as the effects of turbulence become more pronounced (i.e., where in fact the beam
breaks up into multiple patches). To this end we develop formulae for the mean
square beam wander angle of a focused laser beam transmitted through a
homogeneous-isotropic (e.g., constant altitude) atmosphere under both weak and
strong turbulence conditions. We find that tilt correction is of marginal benefit (at
best) under strong turbulence conditions. Since atmospheric phase aberrations
must be corrected at the laser aperture, the phase of a spherical wave emitted
from a source in the focal plane of the laser is measured and the tilt of this wave is
determined. The "negative" of thi tilt is then used as the correction. It is shown
that differences exist between the wander angle of the transmitted laser beam and
the tilt of the received spherical wave. These differences exist since it is not
possible to collect the entire field due to the point source in the laser aperture
plane. However, in practice these differences appear to be small indicating that
the method of tilt correction is useful.

In this report we will use the centroid as a definition of wander angle or tilt.
Since most adaptive optical systems measure "phase" and define the tilt in terms of
a least squares fit over the aperture, it is of interest to determine the correlation
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of the tilt defined by the two methods. We have only been able to do this in the
weak turbulence regime where the correlation between the two methods is found to
be nearly 100%.

Engineering formulas are also developed for quick calculation of wander
angle and peak on-axis irradiance of the transmitted beam for which a tilt
correction has been made. These formulas are simple enough that hand calculation
suffices.

In the next section we will define the regimes of weak and strong turbulence
and briefly describe the results of this work for those who are not interested in the
theoretical details. In Section Il we will derive general expressions for the 2-axis
mean square wander angle for both the transmitted laser beam and the received
spherical wave. Specific derivations for the two cases will then follow in Sections
IV and V. In Section VI we will derive the correlation function for tilt defined in
terms of the centroid and the tilt defined in the least squares sense. Finally in
Section VII we will present engineering formulas and comment on their applica-
bility.
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II. DEFINITIONS AND RESULTS

An optical beam interacts with atmospheric refractive inhomogeneities of
all scales. Turbulent eddies having characteristic dimensions greater than the
beam diameter lead to refractive effects (beam wander); these large-scale
inhomogeneities lead to net wavefront tilt. Conversely, eddies having character-
istic dimensions less than the beam diameter lead to diffractive effects about the
instantaneous center of energy. The small eddies cause the primary amplitude
effects on the wavefront. These effects become more pronounced as the strength
of turbulence and/or propagation range increases. A quantitative measure which
separates the regions of weak (amplitude effects negligible) from strong turbulence
(strong amplitude effects) is given by the first order Rytov log-amplitude variance

of a spherical wave which for constant altitude propagation is given by(z)

o,f, =0.124 k7’6zn/60ﬁ )

where k = 27/ 7, A\ is the optical wavelength, z is the propagation range, and Cﬁ is
the index of refraction structure function. As is well known, the log-amplitude
variance saturates to a value close to unity as the propagation range and/or Cr21
increases. Equation (1) does not behave in this manner; however, the propagation
range dividing weak from strong turbulence can be defined by setting 0% = 1. This
range is referred to here as the saturation distance and is given by

6/11
s 1 3 3.12 @
s~ | 0.124 10 C‘rzl © c_ﬁ)s/“k”ﬁ

A plot of this saturation range vs wavelength with C'Z\ as a parameter is
shown in Fig. 1. As is seen from this figure, amplitude effects are much more
pronounced for short wavelength lasers. A measure of the phase degradation of a
wave is given by the long term lateral coherence length of a spherical wave,
defined by(s) the detector separation at which the mutual coherence function M(p o)
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po(z) = (0.545 k cnz) 3)

We have plotted po(zs) vs wavelength with Crzl as a parameter in Fig. 2. As can be
seen from this figure, p o(zs) is considerably smaller than the aperture diameter for
most cases of interest. We will also define two dimensionless parameters in which
the results of this paper are expressed. These are the ratio of the laser or
receiving aperture diameter to p o(zs) and the normalized propagation range, i.e.,

€ = o =
D/Po(zs), z, = z/z 4)
Finally, to complete our definitions, we present a plot of C?‘ vs altitude in Fig. 3

which is useful in calculating various cases for the wander angle. The model shown
. (4)
1S

cf] = 5 x 10 14y 0-8737 1 < H < T-2000
T<H € ®
3 17
= 8x10 T-2000 < H< T (5)

where the units of H are in meters, 0'2\ is m-2/3, and T is the altitude of the

tropopause. Other models for cr21 exist, notably these developed by Hufnagel.(s)

With these definitions we now present the results of the present study. The
2-axis mean square wander angle of a focused laser beam under weak and strong
turbulence conditions vs the aperture obscuration ratio § is {the 1l-axis value is
equal to one-half the corresponding 2-axis value)

5/3
400 € 4B),(Dx)
2
<0T>weak 2 2 f MJ(X)e = (6)
97Dk (1 é°)
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1
w’%‘)strong = —————"2- { x2/3 [1 - (ex)s/ 3] MJ (x)exp[-Z(ex)S/ 3zn]dx
9 7(kD)%(1-62)

(7)
where D is the aperture diameter, M J(X) is the aperture mutual coherence function
given by(s)

M4lx) = cos 1x x \/l—-xz + [62 cos”! (%) -X de-xz]H(é-x)
- wé’H (1—;—4 = > + la?-82 +4 x2sin’ a [cot(a-b')-cot a] l
1-4 1+0
= H( 'T>H<T“"> ®)
2 2
7= et 1+4§x-6
2 22
& = C(B—l (1-4}4( ;6 >
H(x) = 1 x20

=0 x<0

and BX is the log-amplitude correlation function of a spherical wave. Under all
turbulence conditions Clifford has shown(7)

1 0
11/6 5/6
o @ dy .2
BX(Dx) = CX(Dx) = 2%z J‘du[u(l-u)] -l—lj/%sm y
5/6
X exp[-znu/s[u(l-u)] F(y)

172
0.58¢

ool )
n

(

o0
Fly) = 7.02 y5/8 f aee8/3 [1-.1 (e>]
0.7y =

2
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If we apply asymptotic limits to both the weak and strong turbulence conditions we
can obtain a connecting formula which appears to be valid for all turbulence
regimes. The resulting expression for the 2-axis mean square transmitted wander
angle is

axi1-8% (o) 1'% 1+57 €%z A@)
where
A®) = [ x*my ax (11)
= 0275 - 0.989 §2-2° 0< 8<0.5

For the received spherical wave case, the results are essentially identical to

the transmitted laser beam case, except under strong turbulence conditions (zz,zs)
for which

©d =6 @ (12)

where

4816 /5) (265/3z )‘6/5
n

Sy 51r1-6>

and ["is the gamma function. Note that F is the normalized variance of received
power collected by the aperture due to the spherical wave. This variance is
generally very small for strong turbulence (due to aperture averaging) and an

‘asymptotic expression exists for G:




| - Bk v
| O ® FYIRIHAE 4 (13)

' Noting that the first order correction to G decreases as zn_G/ s

and that similar
! contributions were neglected in deriving the strong turbulence limits of (0.% y We
i can conclude that <91§> = (0.% ), to a numerical factor of the order of unity.

b As indicated above, for adaptive optical systems there is interest in
| determining the correlation between the wander angle defined by the centroid b
and the tilt 9 defined by a least squares fit of the phase over the aperture, as
i defined by Fried®, Note g, &5 used to obtain (0,?,). For weak turbulence

conditions, i.e., z < z, we find that the correlation is given by

. 6.0 j1x8/3M (x)dx )
-‘1 Cq o0) = -——-P—<;° 2> Yo L —9 (14)
‘ pe [<0c>(9p>] V2 N61/2 [‘/'xZ/:st(x)dx]l/2
; 0
i where
] 1‘/234/32 180 23/3\ . 37 (1+6\11/3 4
Ns = \|Fai/e) amsia| \L+9 i W(T) 4
] 1+8
;; 2
[ —% [ sz(éc 61 a, a-)de (15)
] 14
r 2 '
' and

T¢, 6, a, 9) = 6401 +§63 sina-5+§€sin§

i
| 5 3z .3
3‘ +16 ¢ sina <cot 7 - cot o + 0t 8 - cot’a 3°°t a>

-5 dein’ [Q%g (esc®® - esc®a) + sin aleot ¢ - cot a)]
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with ¢ = a -8, and a, @ being defined in Eq. 8. For no obscuration
Cc (0) = 0.9919 while at §=0.7, C (0.7) = 0.9602, indicating a high degree
Ocop «ac ep

of correlation for weak turbulence conditions for all cases of practical concern.
Due to mathematical complexity we have not been able to determine the results in
the strong turbulence limit. However we expect the correlation to decrease as
turbulence increases since the phase becomes uniformly distributed over 27. A
measurement of phase using an interferometer may therefore be meaningless under
strong turbulence conditions.

Finally, an engineering formula for Ir el is given. This quantity is the ratio
of the peak corresponding on-axis irradiance with tilt correction to the correspond-
ing on-axis irradiance in the absence of turbulence. We find that

2 2
T "o F(*ﬁ'B ,zn)

I .= (16)
rel 2 2
6o
where
Ovac = 2\/=D,
2. 2 2 2 ;a2 2 5/6 100 5/3
6o = Oyge |M +oJ/ovac 0 <6 Zn " 9x € zn9 ’ )
<o 4002n65/3
I(d) = €O )/ |——-—
T2/ 19 r(1- 6%D)?
2
2 e"¢B + zn11/3
F(¢,,2z) =
- dn S 07 R
n
05 = 251x 1072 /3, |
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T is the atmospheric attenuation coefficient due to all inherent linear extinction
characteristics of molecules, aerosols, clouds, ete., 03 is the 2-sigma mean square
jitter angle, m is the aperture diffraction limit performance factor (m is unity for
a perfect aperture, it is usually bigger than 1 due to imperfections in the aperture
or aperture illumination), and 9.?,, the laser beam mean square wander angle, is
defined in Eq. 10. In the next section, the mean square angle of arrival will be
defined in terms of the centroid and the general expression derived for both the
transmitted laser beam and received spherical wave cases.




Ill. FORMULATION OF WANDER ANGLE

We are interested in treating two wander angle problems. The first is the
determination of the mean square wander angle of a transmitted laser beam in the
far field or focal region of the laser aperture (Fraunhofer regime). The second
problem is the determination of the mean square angle of arrival of a spherical
wave generated by a point source in the laser target plane and observed by the
same aperture generating the laser signal. These problems are treated statistically
with anglular fluctuations caused by the random changes in the index of refraction
of the atmosphere due to temperature variations. It is assumed that the index of
refraction fluctuations are isotropic and homogeneous and can be described by the
Kolmogorov spectrum. The strength of turbulence is described by the index
structure constant C?‘ which is assumed to be independent of propagation distance.
The extension to non-uniform turbulence conditions is straightforward.

For both cases under consideration the optical field in angular coordinates

(a, B) in the focal plane can be represented as(z)

ikR :
Ula, B) = 75 eT"fﬁJo(n,e)W(n,s)e"k(“” * B )anae (18)
(o]
b3

where Uo(n, §) is the field at the position (1, £) in the aperture plane due to a
spherical wave from a point source located in the laser target plane (note that the
point source is located at a position denoted by (a, B) in the transmission case),
W(, §) is the aperture weighting function, k = 27/, R is the far field "focal"
distance, and 2 represents integration over the clear aperture area. In the
transmission problem the weighting function includes the field distribution of the
laser beam incident on the aperture. For both cases under consideration we will
assume that the weighting function, except for obscuration, is uniform, i.e., W(1,§ )
= 1. Non-uniform weighting introduces extra terms in the analysis which will be
presented but not carried as we complete the analysis. The angular distribution of
intensity & given by the product U(c, B)U*(a, B):

1T




B k2 b3 ’ 1A S ’ ’
K, §) = UU* = Wﬂf U1, UL, Ehwen, & W (', &)
o

o iklam-n) + B(¢- 5)]dndn'd gde’ (19)

The angular coordinates of the center of gravity (centroid) in the focal plane
for both cases of interest is defined as

j]l(a,ﬁ)adadﬁ _[[I(a,ﬁ)ﬁdadﬁ
, fl(a )dadp [/f(a,a)dadﬁ

where the integratiors are carried out over the entire focal plane. Let us first
evaluate the integral in the denominator.

(20)

For the transmission case the denominator, by energy considerations, is the
total power emitted by the aperture. For the receiver case

00
/]I'(a,B)d adp
o0

U 80U (', & IWin, HW ¢ )

(o]
w {
x [/;_-ik[a(’?-ﬂ') + 8- g 0 ap
-0

Elfﬂ 047, &% wn, ) “amag
(o}
5 (21)

This is the power intercepted from the point source by the aperture. This quantity
is not a constant but varies in a statistical manner and hence must be included in

any ersemble averaging process. The evaluation oi the numerator follows in a
similar manner:

-18-
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2 s ’ ’ ’ ’ ’ ’
al(a,f)dadp = 4—"2—R§ ff j];V(ﬂ,E)W"'(n.e)dndednde U 7,6)U ', )
L
e £

X e—ik(E-e')Be-ik(n-n’) dadp (22)

For the receiver case Uo and U : are independent of (a,B) and this term can be
removed from the integration. For the transmission case an argument can be made
that if kV a2+62 D 2 1 then the exponential terms oscillate very rapidly giving
zero contribution. This means that significant contributiors to the integral occur
only for angular coordinates such that Va2 + Bz< —2)-"—1-) However,
U, §u’ (n ¢) varies on scales of the order of {L where p_ is the lateral
coherence length. 3 For D > p o which is the’ case of interest here,
U (TI E)U (77 ,&) can be considered mdependent of a, B. This again implies that

these terms can be held constant for integration over «, B; i.e.

- D MU, )Win, 6
ala,B)dadf = — U _(n,6)wn,é) dnd¢ (23)
kRz () ar)
-00 o Z

This is obtained by noting that(z)

00

ﬁze—iuada = 276 ()i

-0

At this point we drop the aperture function W(7,£) assuming it has a zero gradient
and noting that its inclusion results in an extra term in the numerator.
The mean square wander angle for the transmission case is then equal to

5 ffw 0iwv @1 (wv @ N0 drar
2
P

(24)

02> = (a 2»4;2> 5 2
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where P is the power transmitted by the aperture, and () indicates the

ersemble average. The corresponding mean square wander angle in the receiving 3 1
case is equal to
U @YU @1gU i)
(0;‘;) B % J]( 2 e 2 5 o )dzdg_’ (25)
k (fu (U ()

We consider these cases separately below.

- 20




Iv. FAR-FIELD MEAN SQUARE WANDER ANGLE OF A TRANSMITTED
LASER BEAM

To obtain the mean square wander angle for the transmitted l¢ .er beam the
ensemble average of Uo(g_)[_\ZU:([)] -(yu o(;’)]Uf;(r') is required. This average can not
be determined over all turbulence regimes since the field statistics are not known
for the intermediate turbulence strength regime (i.e., z ~ 1). Instead we consider
the regime of weak turbulence conditions (zs <« 1) for which the field statistics
are known to be log-normal and the case of very strong turbulence conditions (zs
>> 1) for which the field statisties is known to be normal. We then use a smooth
connecting formula to obtain results which we postulate are valid over all
turbulence conditions regimes.

A. WEAK TURBULENCE RESULTS

In the weak turbulence conditions regime the field statistics are log-
normal.(z) Therefore we let

Uo(.!:) = e!/'(g) = eX(I_)"' is(_[) (26)

where X(r) is the log amplitude and S the phase of the spherical wave from a point
source located in the target plane. The required ensemble average is then
rewritten as follows:

U @IZUOMHIU V) = tim % gl_a(uo(gl)u’;;(;2>uo(g3)uj;<g4)>, (27)
LH—Iyg—r
I3

—

i

where we have taken the gradients outside the ensemble average by the use of the
limit operation. The validity of this approach will be demonstrated in the section
on strong turbulence. Writing the field in terms of the log-amplitude and phase,
the fourth order correlation function in Uo becomes




-

[yt = UEIULEIU )UE,) >
= Cexp[X(ry) +X(ry) +X(ra) + X(r,) +iS(ry)

- iS(ry) + iS(rg) - S, (28)

Far a Xand S which are normally distributed, it can be shown to second order (in
the exponent) in the index fluctuations that (e'p) = exp[Y +%((¢’-('J’> )2>].
Therefore the fourth order correlation is given by

I"(El, L9y I3y 1'_4) = exp [ '% [Dw(,l'l‘_l_‘zl) + D(/)('-E3_—!:4I) + D¢(]£l"_l'4,) + Dd’(,£2_£3,)

- Dyllry-rgh) - Dyle; -, +2Byl(ry -rg)) + 2B (Iryry))

+ 2i[€S X(|r;-r4|)> - (SX(|£2—£41)>] ’ (29)
where D!P is the wave structure function, BX is the log-amplitude correlation
function, and SX is the correlation between the phase and log-amplitude.(Z) Taking

the gradients with respect to coordinates 2 and 3 and performing the limit
operations we obtain that

lim ¥y Tyl (ey tp o ry) = |- %VZDX(IE-I’[)+4[B>'((|g-_r:'l)]2+4[SX'(|_|:-3'|)]2
S Eg—L
TgLg-r x  ewl4By(Ir-r|). (30)

If we substitute the results of Eq. 30 into Eq. 27 and then into Eq. 24, and
neglect the terms [B"(]2 and [SX']2 in comparison to VZDX (see Appendix A) we
obtain the results for the mean square wander angle of a transmitter laser beam as

4. 2
D'l
(9,%) = 2 h/]xdx

k2 p?

MJ (x), (31)

2
VD, (lp]) exp(4B, (Dx)]
o Yl /pr X
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where M 6(x) is the normalized overlap integral (MTF) due to the aperture (Eq. 8)
and I 9 is the uniform irradiance at the aperture. Since all propagation paths are
far above the ground, we neglect the effect of the outer scale on the wave
structure function DV/ (If the beam diam eter becomes equal to or greater than the
size of the outer scale then the outer scale effects must be included in DV" The
outer scale is approximately equal in magnitude to the height above the ground up
to several hundred meters.) Then(®

D, (eh = 2[,,,,,0(2)]5/ Y, (32)
where p_ s given in Eq. 3. Taking the Laplacian of%— Dw(lp}) yields
5/3
2/ p " 25
v "(%) TR (33)
o

Using Eq. 4 in the form

o3 = 3an'5’ 3 (34)

yields

5/3
400€"' "z 4B, (Dx)
(0.%) = L 5 x2/ 3M6 e X dx, (35)

9 7(kD)%(1-48°)

where M6 (x) and BX are defined in Egs. 8 and 9, respectively. For weak turbulence
BX = Cx is very small and the exponential factor in Eq. 35 can be neglected. We
will include this factor for more exact calculations but for the engineering
formulas, developed below, this term is not necessary.

The final result under weak turbulence conditions for the 2-axis mean square
wander angle for a transmitted beam is

5/3z 1

Anqoiy« M £ 8 f x*/3my oax., (36)
B 42
(kD)“(1-67) o

T




B. STRONG TURBULENCE LIMIT

The principal difference between the weak and strong limits of turbulence is
that under strong turbulence the fields are statistically normal while in the weak
regime they are statistically log-normal. This leads to significant difference when
k treating the ensemble average expressed in Eq. 24. We will perform the ensemble
average in two ways. The first follows the technique used in Eq. 27 of using
limiting operations and taking the derivatives outside the ensemble average while
the second takes the derivatives of U o before taking the ensemble average. The
two results are identical verifying the first technique used here and in the previous
section. Following the method used in Eq. 27, the determination of
I"(gl, Loy Iy 34) is required under strong turbulence conditions. For strong
turbulence conditions the field statistics are jointly normal. Hence,

(U UEE,)U (00 U(E)D = (U (E))U(Eg)> (U (£a)U () >
* (U eU 2> U (£5)U (£5)> (37
where uncompensated phase terms have been neglected since they will average to

(9)

existence of a long range correlation tail besides the terms given in Eq. 37. We

zero very rapidly due to the high optical frequency. Fante has shown the

will show that this tail does not contribute significantly to (0%) for large z in

appendix B. For strong turbulence, it has been shown that the second order
correlation function is the same as for weak turbulence, i.e.,

Iy 59) = CUGULE = expl- 3 Dy(lr,x)] (38)

which implies that the fourth order correlation function for strong turbulence is
given by

| -24-




@y 5y 5o £g) = el 3 Dylryory)) - 3 Dy rgery ) |
+ expl- 5 D, Ity 1, ]) -  Dylr,-ry . (39)
Ferforming the gradient and limiting operations yields

lim Yy Vy (3, o513 1y) =% Vf,D',,(tgl) -% (va (lg;))z exp[—Dw(Ig()],
L0 ) S ¢
T3.Ty—r’ (40)

where p = r - r'. Substituting this result into Eq. 24, performing the integration
over the sum coordinate and expressing the results in terms of ¢ and z, yields the
2-axis mean square wander angle of a transmitted laser beam in strong turbulence
is given by
400€%/3;
n

g g

9n(kD)“(1-8")

1
S x*P14ex0%% 1, eri-2(e0%%z Jax.

= 2 =
B =<0 § 5

(41)

This is the main result of this section.

Note that in very strong turbulence an asymptotic formula may be derived
from Eq. 41. For this case, the scale on x is very small due to the exponential
factor; therefore, Mg (x) may be replaced by MG(O) = —2(1—62) and the limit on the
integral extended to infinity:

o0
2 . S, —v/2e Yav = 10 (kD) 2(1-42)1
(0T>asym_ P 6/- (1-y/2)e “dy = 3 (kD) “(1-87)". (42)

This implies that in very strong turbulence the rms wander angle of the transmitted 1
laser beam tends to a constant which is of the same order as the diffraction limited
angular spot size of the aperture.

-25-
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We now return to a consideration of the second method of determination of
the ensemble average expressed in Eq. 24. First we note that the field Uo may be
expressed in terms of its real and imaginary parts (X,Y) which are statistically
independent and distributed normally with zero mean and the same variance. The

ensemble average becomes

€ = IX() + iYOUZXE-iTY ()] - [¥XE) + igY X E YD
= (|5 2x%0 + Y20 - IXOF,YO-YOT X0 32 (X €Y
+lXE)T Y )-YE )_v_/r,x(_r'n}). (43)

Expanding out the product, noting that the ensemble average of an odd number of
terms is zero for gaussian statisties, that X2 + Y2 is the intensity, and that X and
Y are statistically independent and distributed identically yields
= £ ¥, 7, IDIE)> + 2<XOXE DT, T YOYED
= ZZr,<X(_r)X(£')> -_Yr<Y(5)Y(_r')). (44)
Fante(g) has shown that the intensity correlation is

A =1+ em-D¢(| r-r'|) + TAILL. (45)

We drop the tail term which is small (see appendix B). The correlation of the X, or

Y components of U o is

). (46)

XEXE)D = <Y@Y(E)) = % exp[-% Dy(|r-r’

The ensemble average of € becomes
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€ =3 V,Z;Dw(lal)'%l%%(lel)lz expl-D,(|a )], 47)

which is identical to Eq. 40 and completes the proof. In the next section we
consider a simple connection formula between the weak and strong turbulence

limits.
€ (0,?.) CONNECTION AND ENGINEERING FORMULAS

We now have an equation for both the weak and strong turbulence regimes,
given by Egs. 36 and 41. respectively. We will connect these formulas smoothly

and accurately to order zn'u/ 3 (i.e., to order a.:.) as follows
11/3
<6¥.> < A+an
1 +z“11/3

X 400 65/3zn szNMG (x) l1+znl1/3[1-(ex)5/32n]exp[—2(e x)5/3zn]l dx

)
9 x(kD)2(1- %) (1+zn1” 3 (48)

where A and B are defined in Egs. 36 and 41, respectively. We have used this 2-
axis equation to calculate the focal plane l-axis root mean square (rms) wander
angle of a transmitted beam. The results are shown in Figures 4-33. The curves
show the rms wander angle in microradians vs the propagation range. Each figure
is for a particular wavelength, strength of turbulence, and obscuration ratio, as
indicated on the figures. Each figure contains four curves each of which is for a
different aperture diameter. Figures 4-27 are for diameters of 0.1, 0.2, 0.3, and
0.4 m while Figs. 28-33 are for 0.25, 0.5, 1.0, and 1.5 m with the smaller diam eter
curves lying higher in the figures. Each curve is qualitatively the same with the
rms angle increasing as znll 2, reaching a maximum then falling to a constant value
depending (weakly) on the wavelength, obscuration ratio, and aperture diameter.

.




|
|
1

B T —

An engineering formula suitable for hand calculation has been determined
from Eq. 48 which is valid for obscuration ratios up to approximately 0.5. Using
the asymptotic limits given by Egs. 36 and 42, gives an engineering formula for the
total 2-axis mean square angle of arrival as

. 400 /32 A(8) 0.5z 113(1-4%
Op> = —p y 1t —5573 ,
(1-8% 9w(kD)’ (142 _11/3) T4 €72, A0)
where
573 L0
A(d) = [0.27534(1+61”3)-o.61(12l’ f[ z 23
-d
I 2. 2.2 2

X {a “-0 +4x“sin"a

X  [cot(a-0) -cota]ldx

= 0.275 - 0.989 §2-29 (49)
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V. ANGLE OF ARRIVAL OF A POINT SOURCE

In order to determine the angle of arrival of a spherical wave in a receiving
aperture due to a point source in the laser target plane it is necessary to calculate

the ensemble average as given in Eq. 25. Making use of Eq. 27, we note that the E
required ensemble average is |

Uge))U o)V (50U () > e |
b 2 2 3
<f U @U(pa’p)

Consider the integral of the intensity over the aperture. For weak turbulence the

‘ (), ro I3 gy =<

intensity does not fluctuate much from the vacuum limit and the integral can be
taken outside the ensemble average. As the strength of turbulence increases the
amplitude coherence length decreases with its maximum value being approximately
equal to \/z's_/l? and decreasing to a value of the order of the phase coherence ! ;
length po(z). For the range of aperture sizes we are interested in, there are many
amplitude correlation patches within the aperture. The central limit theorem
implies that the integral of the received intensity is then a normally distributed
random variable. By noting that U & is normally distributed under strong turbulence
conditions, an approximate result may be found for Eq. 50 as follows. Let x be the i 3
normally distributed random variable representing the integral of intensity over the
aperture. Then

3 0,00
%: [on(B)UZ(B)dZP] = ll-'»no ofo,/;]ad'ye-e(aﬂ)sinax simx.  (51)

Expanding the sin functions into exponentials yields

i sinax simyx = --‘li[ei(“ﬂ)x+e'i(°‘W)x-ei(a-'v)x_e-i(a-'r)x].

We next substitute this expansion into Eq. 50 and consider each term in the

ensemble average separately. Let § = +(a+v), then for each term




4

i *(o Yo IBX\ - lim 5
<U°(£1)UO(£2)UO(£3)UO(Q)e 27 W1 sWoyWa,W 0 aw Bw 5w ow (e"P‘WIU ;)
w2U2(52)+w3U°(_l;3)+w 4Uz(l‘4)'i3xl)- (52)

Since all the factors in the exponential are normally distributed with zero mean,
the ensemble average on the right hand side of Eq. (52) becomes

exp[-iB O+ %([w U *w, U, +w3U3+w4U4 -iB(x-@)] )l

We have simplified the notation letting the position coordinate be indicated by the
subscript on the field variable. This exponential factor written explicitly yields

sk £33 3 2 2 2
(e w U +wyUstwaUstw, U, l)expl-IB(X)-l/2B [{x™>-x>7)
X exp iﬁ((X-(x))(w1U1+w2U w Us+w4U4))
The cross term between (x-<x)) and the field variables U is zero since the U's are

normal and there are an odd number of field variables in the ensemble average,

i e.ﬁU (B)U (g)U (r, ))d £ = 0. This implies that the ensemble average shown in
Eq. 50 becomes

r(51,52,33,34)A = 1‘(31,32,;3,34) ( ( fU ‘B)U*I(B)dzp)z ) , (53)
(o] (o]

This mears that for strong turbulence, the angle of arrival for the receiver case is
modified by a multiplicative constant which is the normalized ensemble average of
the square of the integral of the received intensity over the aperture. That is,

oty - o> (Lo @) b

ﬁ (@ d p)

(54)
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For weak turbulence the results for the transmitted beam and receiver case are
identical.

We must now find (l/xz). We have already shown that the ensemble
average of one of the exponential factors in the expansion of the sin terms of Eq.
(51) is given by

e [-i8 G- 3 BEKxD -,

where B = Ha+y). Now let
2
- I D
a=<x) = f U @U@ d® = —S— a-6?,

and
a’F = (x2>-(x)2
=ff (€U (21U {0V (25U {o,D-<U (o)U Jlpy U o200 o)y la%p a0,

1o ffexotD, o2, 6%y,

1:102D4 J XM, wexpl-2€>%z_x*/ax. (55)

For very strong turbulence and § < 0.7 an asymptotic expression for F can be found
by approximating Mo"‘) = MJ(O) = 1-62. Then

F = 481"(6/25) [265/3z“]-6/5, (56)
5(1-8%) i

and upon taking the ensemble average of Eq. 51 we obtain that
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dye-e(a +y)
00

(1/x2) = lim R da sinax simx . i
€—( 00

= -611% : of of dad'y(eXP[-e(a*"r)] |expl-0-5(a+‘1)232f"1

o)

cos (a+y)a - exp[-0.5(a -q)2a2F] cos(a -q)al) (57)

X

For the term with a + v alone we change variables by letting f = a + v and the
integral becomes

[+ o}
222
a’Fpg“/2
lim ofda j:ﬁe—aee- cosa
€—0 &

2 2
lim fozda €t Fa /2,00 oa
€—0

0
2 2
/Pada e 2 Fa /2cosaa
o0

5 -a’Fals2
. 1-a sinca e daj .
aF

The second term is treated in a similar manner by letting § = y-a. This term then

becomes
00

25,2
lim s dae’zea_af dpe P @ TP /2005pa

€—0
f" -ea_-a’Fa’/2 2€a
-lim 0 dae e cosoaa t2€ e
€—0

2.,2
_aﬂﬂe-eﬁe-a Fg /Zcosﬂa
00

S
-dfadaea Fa /2ccsaa

& 2
2
-—;- l-ao'/.sinczae.a Fa /zda].
aF
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Fig. 34. Correction Factor y Relating the Wander Angle of a

Transmitted Laser Beam and the Tzilt Angle of a Re-

ceived Spherical Wave < Gﬁ) = YZGT
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Fig. 35, Correlation Between Tilt of a Wave Defined by Centroid Method
and Tilt of a Wave Defined by a Least-Squares-Fit of the Phase
Over the Aperture vs Obscuration Ratio. (Weak turbulence
only)
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Therefore
00

2 2
(1/x2> = —%— [l-adf sincaed £ o ﬂda]
F k

a
0 3
= _;_ [1-.11% 3, iﬁ_] (58)
aF k=0 (2k+1)"

Note that an asymptotic solution for (1/x2) can be found when F is very small by
considering the integral

o0
: 20 2
61'_% Of ada cosan e €% Fa /2

and expanding the term containing F as

o0 9 nfoo
(1/x2> = lim Z 1_(:_&__1_’_>0 a1y cosan e €

€—0 n=0 ™\ 2
% n
= -5 2 BBy s Lpwgpasehe o o)
a” n=0 3 a

Finally we have that the correction factor for the receiver case is given by Eq. 58
multiplied by az. We have shown that F behaves as z"-s/5 for z > 1. Since we
have neglected contributions from the tail in the intensity correlation, which vary
zn-n/15 in the determination of (0,?,), it would be consistent to set the
correction factor to unity. What is interesting is that the correction factor is
greater than unity for small F then decreases below 1 for larger values. A plot of
the square root of the correction factor vs F is shown in Fig. 34. Note that the
approximation breaks down when the central limit theorem & not valid, which
probably occurs for F values greater than about 0.2.

as
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VL CORRELATION BETWEEN CENTROID AND TILT ANGLE OF ARRIVAL.

Besides using the centroid method to define angle of arrival it is possible to
define the angle of arrival by minimizing the mean square phase error across the
aperture, as previously done by Fried.(s) This tilt angle is defined for the x-
direction in weak turbulence by

ﬁ(¢(£)W(_l‘_)d2r
S e (60)

6
Py 4 r3w(r)dr

where #(r) is the phase as measured by interferometric techniques and W is the
aperture function for the intensity rather than the field. These two methods can
be compared by calculating the corresponding correlation funection, i.e.,

9 9 1/2
Co,0, = <& %> [<op>- <oc>] ; (61)
where we have already defined the centroid wander angle (see Eq. 24) as

WU ©IZ,U,0W ©ld’r

w(_!'_)lzl(g)dzr

Assuming a uniformly illuminated aperture we have

1/2 N2 }.:/:t;¢(r)d2r

9 /<02) E 2 ’
Sl [./:/-(Rz-p2/4)D¢(_lgl)dzpdzR]l/2

and

-iy2 E{;J o(g)ZrU;?g)dzr

ﬁn2xo[ jl ax 7,2D,(/p) Ma(x)]l/z
0

9 1/2
8/<8%>
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Therefare the correlation function is (setting Io =)

-i 2 ffr Z.U e )u o) d’rd?v

r o= (
f xdx l% D‘/,(lt’I)’Md(x)]j172 :

c
ocop NrD [ﬂ'(R -p /4)D¢(|P|)d2 & ] ;2[

62)

0
5/3
For weak turbulence condition we assume that D¢ = Dl/’ = 2(%—-) and using the
results of Ref. 11 we obtain that .
-iNgJJr'. ¥ (r)¢(r U () d Zeae’
o0, - 22 (63)
% xD? €33, n[ f x*Baxm (x)]l/le i
0

where N6 is given in Eq. 15. For weak turbulence condltlom, the ensemble average

of ¢(r')U (r)VU (r) can be shown to be equal to & VD¢(|r-r 1) by methods similar
to that used in sectlon IV-A. Hence

L. I f £’ Z.Dy(rr] )a2ra?r
0.0 =
PC s5/3¢D e5/3z AN ]1/2[ 1 x2/3dxM6(x)dx]l/2

- 0
ojjxsﬁ'Md (x)dx
1
[Nd ]1/2[‘[ x2/3M6 (x)dx]ll2

For 8 = 0, the integrals in Eq. 64 can be performed analytically yielding

(64)

|-

C = 0.9919.
Op 6,

A plot of CO @ Vs the obscuration ratio is given in fig. 35. Note that a high
degree of corrBlation exists for all values of 8, i.e. at § = 0.7, CO 0 is still
= 0.9602.
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For strong turbulence conditions z > zg, this analysis is not valid since
"phase” & not a measurable quantity. Phase is determined analytically from a
diffraction or intensity measurement. On the other hand the angle defined by the
centroid is a measurable quantity. Once a method of tilt determination by a least
squares fit of phase over an aperture is defined in terms of measurable quantities
we will be able to complete the analyss under strong turbulence conditions.
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VII. ENGINEERING FORMULA FOR LASER BEAM PROFILES
(10)

It has been shown that an engineering formula giving approximate results
for the far field pattern of a uniformly illuminated aperture without tilt correction
can be written as

10) = TIR expl-6%/6%) (65)
where T i the atmospheric attenuation factor due to absorptlon and scattermg,

is the peak vacuum irradiance, 0 the 1 sigma (e ) angular divergence of the
beam is given by

62 = 62, |m® + /2o + 6%/6% ) (66)
2 L 2 2
Ovac = 2A\°/(=D)

OJ is the 2-sigma rms jitter angle, R = 02ac/0 and m is the aperture diffraction
limited performance factor. Under weak turbulence conditions it has been
shown(u) that the short term average (i.e., tilt corrected) beam profile is similar
to the beam profile in the absence of turbulence. The difference is that the
smaller turbulence scales cause wide angle scattering with the result that the
central lobe decreases in value compared to its vacuum value. This decrease in
intensity can be described heuristically by a factor e(-¢§), where
¢§ = 2.51 % 10'265/3zn. It &5 also known that as the turbulence strength increases
that the short term average intensity approaches the corresponding long term
average value. For this reason we write a general formula for the tilt corrected

far field or focused laser beam profile of a uniformly illuminated aperture as
2:02

/8r¢c

TI 02 F(¢B,z )e

vac
Ipc ® —
6'1‘0

(67)
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i B+z 1173
DS R
113 °
l*zn

F(¢ 123’zn)

1

2 2 2 2,92 1 2
bpc © ovac[m +oJ/ow:u:'lhf (e Zn

o.5zn11/3(1-62)

A(4)
ko) = ip. 22 |1t 573 ’

and A(8) is given in Eq. 49. Note that Egs. 66 and 67 contain the same symbol for
the effect of laser platfam jitter on the system performance. These are not the
same quantities since tit correction can correct for a great deal of platform jitter.
The quantity OJ in Eq. 67 should be considered as the uncorrectable or residual
jitter.

In this report we have been concerned with the effectiveness of tilt
correction as the strength of turbulence becomes more pronounced. We have found
that as the strength of turbulence increases the mean square angle of arrival of a
transmitted beam increases linearly for z < zg reaches a maximum (z ~ zs), and
then decreases for z > zZg to a constant which is of the order of the diffraction
limited spot size of the aperture. This means that the effectiveness of tilt
correction decreases markedy for z > zg. A measure of this effectiveness could
be found by dividing the laser beam mean square tilt angle by the long term
average mean square angular divergence of the laser beam. When this ratio
becomes very small, tit correction is not very useful. We have also shown that a
phase measurement is sufficient to determine the tilt correction under conditions
of weak turbulence; however, under strong turbulence conditions it may be
necessary to measure the tilt of a received spherical wave directly in order to
perfarm the reciprocal correction. This direct measurement would require
measurement of the location of the centroid of intensity in the focal plane of the

=-T72=
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receiving aperture.

In this report we have given simple engineering faormulae for determination
of mean square angle of arrival (Eq. 49) and the relative peak i~ ensity of a tit
corrected laser beam (Eq. 67). For example, consider the ca: : of fairly strong
tuwbulence with c2 = 10714 m2/3 and A = 0.5 um. The saturation renge is
approximately 4 km, and po(zs) = 0.7 em. Using an unobscured aperture diameter
of 0.25 m or (€ = 33) and a propagation range of 10 km the 2-¢ root mean square
wander angle is 3.48 urad and Irel =5.8x 104, i.e., no tilt correction is possible for
this case. At a range of 2 km the 2-¢ root mean square wander angle is 7.94 urad
and I, = 6.1x 1073 which represents about a 30% improvement over the

uncorrected tilt case.

This improvement factor does not seem sufficient based on our previous
results in the weak turbulence regime.uo) In deriving the long term average beam
spread we assume that the peak on-axis intensity is directly related to the beam
spread, i.e., that a gaussian profile results under turbulent conditions. From this

we have found that the turbulence induced beam spread additive factor is

2 2 2, -1 _ 2 2_6/5

ovac D [2p°(z)] = ovac z, /2

This engineering farmula has proved very effective in the past, for small values of
D/po(z) (£10), in determining long term average spread fur general aperture

f distributions which were gaussian and truncated. If we use the results for the peak

on-axis intensity far a uniformly illuminated aperture for large values of €, we
l obtain the asymptotic value

2, . 2
1) 4.4072 [po(z)/D ]xo

‘ where I_ is the peak irradiance without turbulence. This means that we could
: modify Eq. 67 such that ezzf',./5 would be divided by 2.204. for the second case

given above, zn = 0.5, Ir -

would then be approximately = 0.03 or an improvement by

o

o
e st i i SR diaiiandl et




a factor of 75 over the uncorrected tilt case.

This process of subtracting the mean square wander angie from the long
term average beam spread deserves further examination. We have shown pre-
viously(m), far weak turbulence conditions, that if the instantaneous phase
aberratiors of the atmosphere are corrected to first order, i.e., for tilt, defined by
a least fit of the measured phase of the return spherical wave over the
transmi tting aperture, then the transmitted beam profile looks like a vacuum beam
profile with a gaussian halo caused by wide angle scattering. The intensity profile
of the long term averaged beam is gaussian however; therefore, the two beams,
corrected and uncorrected, do not look the same and the wander angle should not
be subtracted from long term beam spread to get the appropriate short term beam
radius or peak on-axis irradiance for the tilt corrected case. In order to obtain the
engineering formula 67 we used the engineering equation obtained from examining
the tilt corrected laser beam profile far weak turbulence (Ref. 10) and extrapo-
lating the results into the saturation regime saying that eventually the results
should return to the long term average results as z > Z . This process is extremely
suspect and must be examined in a more critical manner.
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APPENDIX A
VERIFICATION OF THE NEGLECT OF THE (BX')2 AND J
(sX)?2 TERMS IN WEAK TURBULENCE
In this appendix we will verify the neglect of the terms (B/;()2 and (SX')2 in
comparison to VZD in Eq. 30 under conditiors of weak turbulence. To this end we
note that Tatarskii2 has defined structure function terms

: 26 _(1\.2 2, -5/3 m
D (o) = 0.033x% P (§)k%cix SR p (56,0,- 2]

A-1

2 2
;2 236 ~(1).,3.2y -11/3 Xm P )_
Dz(p) = -0.0337 55r(6)'k CnXm 1F1<- 11,1, - ) ) 1

o 20 \11/6 82 4 uu Nond
iX “L X “p iX
-<1+-“‘ > Fil-% - <1+ '“ ) -1

k 6 4 4

where 1F1 is the confluent hypergeometric functionlz. The wave, log-amplitude,
and XS structure functions are defined in terms of Dl’ D2 as

Do) = Dy(p) A-3 i

[Dl(p)-Re Dz(P)] A-4

\
o =

Dy(p) =

Dyg(e) = 3 ImDy(o)

and we define the param eters

22
_me

2
g = 1 H

- 8.8
2
Xo




where Xg is the inner scale. Noting that the structure function is related to the
correlation function by D(p) = 2([B(0)-B(p)] and that the results for the structure
functions for a spherical wave are related to that for the plane wave (Egs. A-1 and
A-2) by replacing p by sp and integrating on s from 0 to 1 we can proceed by
considering different regimes on p. First we are generally interested in the case
when )\L»)\g. Since the inner scale is of the order of 1 mm and for A between
0.3 and 10 um and 10 ecm < L <10 m this condition is satisfied. For g << 1 or p
smaller than the inner scale

2.1
e’q’(%") 2 . ~1\| . 213/6.5/6 2
D,(p) = Tﬁ.oaat .sr‘(g) ¢, A1%01315, A-7
Now for this regime
VZD.',, = 109C_ k2L7\ 13, A-8
o2 11,
ron2 041 1/ 0 2
[BX (p)° = = 32 L7\ -0. 87(,\—L— p A-9
g |00TE, 2,13/6,5/6] ;
[BXS(P)] = 3 P A-10
Therefore
8By (o)) : 2n§ 5/8
—S— < 0126 o \ <> « 1 A-11
v Dw
Similarly
8|B, (P) r)\z /6
XS €19 x 10'4 "T &1
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For the inner scale region the neglect of the extra terms (&')2 and (B)'(s)2 is
therefore justified.

Consider now the region 7\ <p<\/__. For p > A, we know Dw(p) =
2le/p, @P’3 and we have shown that

2 50 1
V°D,(p) == I3 573 A-13
N R
For p between the inner scale and the Fresnel radius Tatarskii(z) has shown that
2l A-14
By =3 Dy
. Gy 25 4/3
For this reason (BX )y = W p ' and
o
2
8(B,) 5/3 2\5/6
2X = [P = 440 ('.‘L) <1 A-15
P L
V D‘J} o

In order to determine BXS we must expand the confluent hypergeometric function
given in Eq. A-1. Expanding Eq. 47.29 of Ref. 2 we find for g/Q<1 that

where
2 36
0.033 7w =
[e] = r—ﬂ_frf—/iﬁz A-16-2
(1)2
Using Eq. A-16
r\2
8B, ) 17/6
—%5_ = o020 (—%) «1 A-17
v D!//
el

s ki




Finally we consider the case of p >/ L/k. For this case

Axtand
DX = UT(I-bX) A-18
and
=1/3
doo L e o UEAE (T k -10/3
By = -gopy, = -2BE (D) () e A-19
where we have used Tatarskii's definition of bx. Then
7 <92 19
8(B, ) 2\ -=
X =0.0265 a,%(%) 6«1 A-20
V°D
Y
Also
11/6 17
Dys * -%{clcﬁk"p‘1’3<1 -n) (2) Imli"g P14, i, - By -1 )
A-21

where [c] has been defined by Eg. A-16.2. Using the asymptotic expansion for
F (-11/6,-11/6,-ig/Q) as

2 2 2
F (- 11/6, - 11/, - ig/Q =1 + i(11/6) %q/g) —11/6) ;!516) Q/g)”
2 2 2 3
_;11/6) (5/6%!(1/6) Q) ... a9

the asymptotic value of st is

Dxs = '%[clcnka(u/s)z(s/s)z(gs%)z(7\L)2p-l/3 + constant A-23

«18s
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Then
8(B'y, ) /6
XS = .5602 Az = x5
2 ™ 2

which completes the analysis and verifies the neglect of (B )2 and (B:\, s)2 terms
from Eq. 30 for all regions of p.
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APPENDIX B
THE EFFECT OF THE FOURTH ORDER CORRELATION TAILS ON (0%)

Recall that the calculation of the mean square wander angle involved the \
determination of the ermsemble average of the intensity correlation function
{I(r)Kr)). Fante9 has derived an iterative solution to this correlation function
under strong turbulence conditions. To the second order in the iteration procedure

the intensity correlation is

B-1

I )Iir)> =1+ Ballpr ) 2ok L R 2 [(02)3/113]
e iry)> = exp - w|£132 (af)Z/s 3 (03)3/5 gl\9,

where

2 2 _, 11/
01 = 40T —42n

RS
a2 (2172

. g(W) = 0.27 0~f:t 331008 1) 0/90 dse™s (243 %% Myy) gy

1 00
-2/5 1/2
2 2 5/6 6[ -11/6 . 2 4t
(0))  f4(R) = 119 0] 0_/ v Py ¥t sin“tJ [(T> R]

X exp |-aft5/6y5/6[4.26-2.66y]|dt B-3

2,3/11 ' : w
Now (01) R = 0.226 e€x, i.e. g(W) is independent of z . Therefore, the
sro s 2 ; 2\-2/5 -11/21 2\-2/5 .
contribution of g(W) to <8“) must go like (a7) orz where (0) is

the preceding factor of g in Eq. B-1. For large z, this contribution can therefore
be neglected. The contribution due to Eq. B-3 is much harder to determine. First

take the gradients shown in Eq. 32.




~

5/6
2. 56 z
=¢.-7. [(af)‘Z/st(R)] = ___Bg___ /y-l/sdy

X d‘/‘ws/ sin texp[ o tsl6 5/6(4.26 2.66 y)]

B4

"y [(eyﬁ)

Note that x is the normalized aperture integration variable. Change variables by

setting w = 02t5/6 5/6, then

(44.8)0 x S

622 7/15 6/5

1 o0
T = 1.59—0 ___ y-l/sdy w-4/5dw sin2 N (e
DZ 2,6/5
0 Y(ol)

11/10 B-5
vz /

3/5
o W(4.26-2.66y) <0 362 €XW )
n

For the uniformly illuminated aperture, the contribution from T is found by
performing the double integration over the aperture which yields .

By = k—2i-2fde'dr’
6/5

1 00
12.63 €2z 15 £y 1B 4u [P aw sin® X
. y(@hH®h
0

2
-w(4.26-2.66y) [JI(Q) ]
q

n




.

Divide the w integration into two regions which are less than or greater than
(5‘52/6)5/3 znlllls.
unity and the exponential factor which is smaller than exp - const z
corst = 27.59 € 9/3, Y s

~-const z,
rapidy with 2 and can therefore be neglected.

In the latter region, the Bessel function term is less than
11/6
where

The factor z, goes to zero very

The remaining integral is divided into three terms which depend on the
range of y integration. These are 0<y<(w/ of)6 /5,
(w/af)ﬁ/5 3/5/5.52 znll/lﬂ, and 6w3/5/5.522.11/10<y,<_1. For all ranges

the exponential is replaced by exp(-1.6 w). For the first range the sin function can
12/5/y2(a%)12/5‘

<y Sew

be replaced by 1/2 while in the last two ranges it is replaced by w
In the first and last range the Bessel function factor is replaced by unity while in
the middle range it is replaced by the asymptotic approximation for large
argum ent, 1./1rQ3. For the first range

2 1/15
12.63 €%z pl Up2
2 -4/5 _-1.6 -1/3
O>n = kzg Jw/e Wd”‘/'y/dy
0

(]

- 3.91¢”
Z2-2
k™D zn

where

5/3

Upl = (sTtag) zn11/16

(wiah® P,

Up2
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This term decreases like z; and can therefore be neglected. The contribution
from the third range is i
Upl

1
2
2 0.453 ¢ 8/5 -1/6w -1/3
6 B f w e l'/ y ‘“dy
< dr3 kznzznss/ls o o

-4/5, 22/15
= )
64W

pl
__0.605€ /“ L 8/5 16w | -T0W
b 2 n‘ 59715

5.9¢2/3 ‘Uil 4/5 -1.6w
* 55 3T/15 W B-8
k“D z, 0 J

where

dnl = ew3/5/(5.52zn11/10)

-37/15

This term goes like z, . Therefore it can be dropped. The middle range gives

94.32 €1, 33/10  Upl dnl ‘ = !

3 n -1/5_-1.6w 2/3
6 = w e dw f y ' dy i
r2 2759715 of Upt ]

Upl

-1 = W -2

S0, 1930 1 Lbw, [(6/5_52)5/3wz U _ g ]
k’p* " 0 *

2 n

23 Upl ;
x 0.846€"°  -37/15 /‘ w8616 4y 59
k2D’

i.e., this term also goes like z "' /1% and can slso be dropped. This concludes our

proof that the tail terms can be neglected in the determination of the mean square
wander angle of a transmitted laser beam.

B r—
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LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conducting
experimental and theoretical investigations necessary for the evaluation and
application of scientific advances to new military concepts and systems. Ver-
satility and flexibility have been developed to a high degree by the laboratory
personnel in dealing with the many problems encountered in the nation's rapidly
developing space and missile systems. Expertise in the latest scientific devel-
opments is vital to the accomplishment of tasks related to these problems. The
laboratories that contribute to this research are:

Aerophysics Laboratory: Launch and reentry aerodynamics, heat trans-

fer, reentry physics, chemical kinetics, structural mechanics, flight dynamics,
atmospheric pollution, and high-power gas lasers.

Chemistry and Physics Laboratory: Atmospheric reactions and atmos-
pheric optics, chemical reactions in polluted atmospheres, chemical reactions
of excited species in rocket plumes, chemical thermodynamics, plasma and
laser-induced reactions, laser chemistry, propulsion chemistry, space vacuum
and radiation effects on materials, lubrication and surface phenomena, photo-
sengitive materials and sensors, high precision laser ranging, and the appli-
cation of physics and chemistry to problems of law enforcement and biomedicine.

Electronics Research Laboratory: Electromagnetic theory, devices, and
propagation phenomena, including plasma electromagnetics: quantum electronics,
lasers, and electro-optics; communication sciences, applied electronics, semi-
conducting, superconducting, and crystal device physics, optical and acoustical
imaging; atmospheric pollution; millimeter wave and far-infrared technology.

Materials Sciences Laboratory: Development of new materials; metal
matrix composites and new forms of carbon; test and evaluation of graphite
and ceramics in reentry; spacecraft materials and electronic components in
nuclear weapons environment; application of fracture mechanics to stress cor-
rosion and fatigue-induced fractures in structural metals.

Space Sciences Laboratory: Atmospheric and ionospheric physics, radia-
tion from the atmosphere, density and composition of the atmosphere, aurorae
and airglow; magnetospheric physics, cosmic rays, generation and propagation
of plasma waves in the magnetosphere; solar physics, studies of solar magnetic
fields; space astronomy, x-ray astronomy; the effects of nuclear explosions,
magnetic storms, and solar activity on the earth's atmosphere, ionosphere, and
magnetosphere; the effects of optical, electromagnetic, and particulate radia-
tions in space on space systems,
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